只用200行Go代码写一个自己的区块链!
区块链是目前最热门的话题,广大读者都听说过比特币,或许还有智能合约,相信大家都非常想了解这一切是如何工作的。这篇文章就是帮助你使用 Go 语言来实现一个简单的区块链,用不到 200 行代码来揭示区块链的原理!高可用架构也会持续推出更多区块链方面文章,欢迎点击上方蓝色『高可用架构』
“用不到200行 Go 代码就能实现一个自己的区块链!” 听起来有意思吗?有什么能比开发一个自己的区块链更好的学习实践方法呢?那我们就一起来实践下!
因为我们是一家从事医疗健康领域的科技公司,所以我们采用人类平静时的心跳数据(BPM心率)作为这篇文章中的示例数据。让我们先来统计一下你一分钟内的心跳数,然后记下来,这个数字可能会在接下来的内容中用到。
通过本文,你将可以做到:
创建自己的区块链
理解 hash 函数是如何保持区块链的完整性
如何创造并添加新的块
多个节点如何竞争生成块
通过浏览器来查看整个链
所有其他关于区块链的基础知识
但是,对于比如工作量证明算法(PoW)以及权益证明算法(PoS)这类的共识算法文章中将不会涉及。同时为了让你更清楚得查看区块链以及块的添加,我们将网络交互的过程简化了,关于 P2P 网络比如“全网广播”这个过程等内容将在下一篇文章中补上。
让我们开始吧!设置我们假设你已经具备一点 Go 语言的开发经验。在安装和配置 Go 开发环境后之后,我们还要获取以下一些依赖:
go get github.com/davecgh/go-spew/spew
spew 可以帮助我们在 console 中直接查看 struct 和 slice 这两种数据结构。
go get github.com/gorilla/mux
Gorilla 的 mux 包非常流行, 我们用它来写 web handler。
go get github.com/joho/godotenv
godotenv 可以帮助我们读取项目根目录中的 .env 配置文件,这样我们就不用将 http port 之类的配置硬编码进代码中了。比如像这样:
ADDR=8080
接下来,我们创建一个 main.go 文件。之后我们的大部分工作都围绕这个文件,让我开始编码吧!
导入依赖我们将所有的依赖包以声明的方式导入进去:
package mainimport ("crypto/sha256""encoding/hex""encoding/json""io""log""net/http""os""time""github.com/davecgh/go-spew/spew""github.com/gorilla/mux""github.com/joho/godotenv")数据模型
接着我们来定义一个结构体,它代表组成区块链的每一个块的数据模型:
type Block struct {Index intTimestamp stringBPM intHash stringPrevHash string}
Index 是这个块在整个链中的位置
Timestamp 显而易见就是块生成时的时间戳
Hash 是这个块通过 SHA256 算法生成的散列值
PrevHash 代表前一个块的 SHA256 散列值
BPM 每分钟心跳数,也就是心率。还记得文章开头说到的吗?
接着,我们再定义一个结构表示整个链,最简单的表示形式就是一个 Block 的 slice:
var Blockchain Block
我们使用散列算法(SHA256)来确定和维护链中块和块正确的顺序,确保每一个块的 PrevHash 值等于前一个块中的 Hash 值,这样就以正确的块顺序构建出链:
散列和生成块我们为什么需要散列?主要是两个原因:
在节省空间的前提下去唯一标识数据。散列是用整个块的数据计算得出,在我们的例子中,将整个块的数据通过 SHA256 计算成一个定长不可伪造的字符串。
维持链的完整性。通过存储前一个块的散列值,我们就能够确保每个块在链中的正确顺序。任何对数据的篡改都将改变散列值,同时也就破坏了链。以我们从事的医疗健康领域为例,比如有一个恶意的第三方为了调整“人寿险”的价格,而修改了一个或若干个块中的代表不健康的 BPM 值,那么整个链都变得不可信了。
我们接着写一个函数,用来计算给定的数据的 SHA256 散列值:
func calculateHash(block Block) string {record := string(block.Index) + block.Timestamp + string(block.BPM) + block.PrevHashh := sha256.Newh.Write(byte(record))hashed := h.Sum(nil)return hex.EncodeToString(hashed)}
这个 calculateHash 函数接受一个块,通过块中的 Index,Timestamp,BPM,以及 PrevHash 值来计算出 SHA256 散列值。接下来我们就能便携一个生成块的函数:
func generateBlock(oldBlock Block, BPM int) (Block, error) {var newBlock Blockt := time.NownewBlock.Index = oldBlock.Index + 1newBlock.Timestamp = t.StringnewBlock.BPM = BPMnewBlock.PrevHash = oldBlock.HashnewBlock.Hash = calculateHash(newBlock)return newBlock, nil}
其中,Index 是从给定的前一块的 Index 递增得出,时间戳是直接通过 time.Now 函数来获得的,Hash 值通过前面的 calculateHash 函数计算得出,PrevHash 则是给定的前一个块的 Hash 值。
校验块搞定了块的生成,接下来我们需要有函数帮我们判断一个块是否有被篡改。检查 Index 来看这个块是否正确得递增,检查 PrevHash 与前一个块的 Hash 是否一致,再来通过 calculateHash 检查当前块的 Hash 值是否正确。通过这几步我们就能写出一个校验函数:
func isBlockValid(newBlock, oldBlock Block) bool {if oldBlock.Index+1 != newBlock.Index {return false}if oldBlock.Hash != newBlock.PrevHash {return false}if calculateHash(newBlock) != newBlock.Hash {return false}return true}
除了校验块以外,我们还会遇到一个问题:两个节点都生成块并添加到各自的链上,那我们应该以谁为准?这里的细节我们留到下一篇文章,这里先让我们记住一个原则:始终选择最长的链。
通常来说,更长的链表示它的数据(状态)是更新的,所以我们需要一个函数
能帮我们将本地的过期的链切换成最新的链:
func replaceChain(newBlocks []Block) {if len(newBlocks) > len(Blockchain) {Blockchain = newBlocks}}
到这一步,我们基本就把所有重要的函数完成了。接下来,我们需要一个方便直观的方式来查看我们的链,包括数据及状态。通过浏览器查看 web 页面可能是最合适的方式!
Web 服务我猜你一定对传统的 web 服务及开发非常熟悉,所以这部分你肯定一看就会。借助 Gorilla/mux 包,我们先写一个函数来初始化我们的 web 服务:
func run error {mux := makeMuxRouterhttpAddr := os.Getenv("ADDR")log.Println("Listening on ", os.Getenv("ADDR"))s := &http.Server{Addr: ":" + httpAddr,Handler: mux,ReadTimeout: 10 * time.Second,WriteTimeout: 10 * time.Second,MaxHeaderBytes: 1 << 20,}if err := s.ListenAndServe; err != nil {return err}return nil}
其中的端口号是通过前面提到的 .env 来获得,再添加一些基本的配置参数,这个 web 服务就已经可以 listen and serve 了!
接下来我们再来定义不同 endpoint 以及对应的 handler。例如,对“/”的 GET 请求我们可以查看整个链,“/”的 POST 请求可以创建块。
func makeMuxRouter http.Handler {muxRouter := mux.NewRoutermuxRouter.HandleFunc("/", handleGetBlockchain).Methods("GET")muxRouter.HandleFunc("/", handleWriteBlock).Methods("POST")return muxRouter}
GET 请求的 handler:
func handleGetBlockchain(w http.ResponseWriter, r *http.Request) {bytes, err := json.MarshalIndent(Blockchain, "", " ")if err != nil {http.Error(w, err.Error, http.StatusInternalServerError)return}io.WriteString(w, string(bytes))}
为了简化,我们直接以 JSON 格式返回整个链,你可以在浏览器中访问 localhost:8080 或者 127.0.0.1:8080 来查看(这里的8080就是你在 .env 中定义的端口号 ADDR)。
POST 请求的 handler 稍微有些复杂,我们先来定义一下 POST 请求的 payload:
type Message struct {BPM int}
再看看 handler 的实现:
func handleWriteBlock(w http.ResponseWriter, r *http.Request) {var m Messagedecoder := json.NewDecoder(r.Body)if err := decoder.Decode(&m); err != nil {respondWithJSON(w, r, http.StatusBadRequest, r.Body)return}defer r.Body.ClosenewBlock, err := generateBlock(Blockchain[len(Blockchain)-1], m.BPM)if err != nil {respondWithJSON(w, r, http.StatusInternalServerError, m)return}if isBlockValid(newBlock, Blockchain[len(Blockchain)-1]) {newBlockchain := append(Blockchain, newBlock)replaceChain(newBlockchain)spew.Dump(Blockchain)}respondWithJSON(w, r, http.StatusCreated, newBlock)}
我们的 POST 请求体中可以使用上面定义的 payload,比如:
{"BPM":75}
还记得前面我们写的 generateBlock 这个函数吗?它接受一个“前一个块”参数,和一个 BPM 值。POST handler 接受请求后就能获得请求体中的 BPM 值,接着借助生成块的函数以及校验块的函数就能生成一个新的块了!
除此之外,你也可以:
使用spew.Dump 这个函数可以以非常美观和方便阅读的方式将 struct、slice 等数据打印在控制台里,方便我们调试。
测试 POST 请求时,可以使用 POSTMAN 这个 chrome 插件,相比 curl它更直观和方便。
POST 请求处理完之后,无论创建块成功与否,我们需要返回客户端一个响应:
func respondWithJSON(w http.ResponseWriter, r *http.Request, code int, payload interface{}) {response, err := json.MarshalIndent(payload, "", " ")if err != nil {w.WriteHeader(http.StatusInternalServerError)w.Write(byte("HTTP 500: Internal Server Error"))return}w.WriteHeader(code)w.Write(response)}快要大功告成了
接下来,我们把这些关于区块链的函数,web 服务的函数“组装”起来:
func main {err := godotenv.Loadif err != nil {log.Fatal(err)}go func {t := time.NowgenesisBlock := Block{0, t.String, 0, "", ""}spew.Dump(genesisBlock)Blockchain = append(Blockchain, genesisBlock)}log.Fatal(run)}
这里的 genesisBlock (创世块)是 main 函数中最重要的部分,通过它来初始化区块链,毕竟第一个块的 PrevHash 是空的。
哦耶!完成了你们可以从这里获得完整的代码:Github repo[1]
让我们来启动它:
go run main.go
在终端中,我们可以看到 web 服务器启动的日志信息,并且打印出了创世块的信息:
接着我们打开浏览器,访问 localhost:8080 这个地址,我们可以看到页面中展示了当前整个区块链的信息(当然,目前只有一个创世块):
接着,我们再通过 POSTMAN 来发送一些 POST 请求:
刷新刚才的页面,现在的链中多了一些块,正是我们刚才生成的,同时你们可以看到,块的顺序和散列值都正确。
下一步刚刚我们完成了一个自己的区块链,虽然很简单(陋),但它具备块生成、散列计算、块校验等基本能力。接下来你就可以继续深入的学习区块链的其他重要知识,比如工作量证明、权益证明这样的共识算法,或者是智能合约、Dapp、侧链等等。
目前这个实现中不包括任何 P2P 网络的内容,我们会在下一篇文章中补充这部分内容,当然,我们鼓励你在这个基础上自己实践一遍!
- 免责声明
- 世链财经作为开放的信息发布平台,所有资讯仅代表作者个人观点,与世链财经无关。如文章、图片、音频或视频出现侵权、违规及其他不当言论,请提供相关材料,发送到:2785592653@qq.com。
- 风险提示:本站所提供的资讯不代表任何投资暗示。投资有风险,入市须谨慎。
- 世链粉丝群:提供最新热点新闻,空投糖果、红包等福利,微信:juu3644。