首页 > 世链号 > 回溯算法团灭排列 / 组合 / 子集问题
币圈印象  

回溯算法团灭排列 / 组合 / 子集问题

摘要:今天就来聊三道考察频率高,而且容易让人搞混的算法问题,分别是求子集(subset),求排列(permutation),求组合(combination)。这几个问题都可以用回溯算法解决。

来源:labuladong

今天就来聊三道考察频率高,而且容易让人搞混的算法问题,分别是求子集(subset),求排列(permutation),求组合(combination)。这几个问题都可以用回溯算法解决。

一、子集

问题很简单,输入一个不包含重复数字的数组,要求算法输出这些数字的所有子集。

 vector<vector<int>> subsets(vector<int>& nums); 

比如输入 nums = [1,2,3],你的算法应输出 8 个子集,包含空集和本身,顺序可以不同:

[ [],[1],[2],[3],[1,3],[2,3],[1,2],[1,2,3] ]

第一个解法是利用数学归纳的思想:假设我现在知道了规模更小的子问题的结果,如何推导出当前问题的结果呢?

具体来说就是,现在让你求 [1,2,3] 的子集,如果你知道了 [1,2] 的子集,是否可以推导出 [1,2,3] 的子集呢?先把 [1,2] 的子集写出来瞅瞅:

[ [],[1],[2],[1,2] ]

你会发现这样一个规律:

subset([1,2,3]) - subset([1,2])

= [3],[1,3],[2,3],[1,2,3]

而这个结果,就是把 sebset([1,2]) 的结果中每个集合再添加上 3。

换句话说,如果 A = subset([1,2]) ,那么:

subset([1,2,3])

= A + [A[i].add(3) for i = 1..len(A)]

这就是一个典型的递归结构嘛,[1,2,3] 的子集可以由 [1,2] 追加得出,[1,2] 的子集可以由 [1] 追加得出,base case 显然就是当输入集合为空集时,输出子集也就是一个空集。

翻译成代码就很容易理解了:

  vector<vector<int>> subsets(vector<int>& nums) {   // base case,返回一个空集   if (nums.empty()) return {{}};   // 把最后一个元素拿出来   int n = nums.back();   nums.pop_back();   // 先递归算出前面元素的所有子集   vector<vector<int>> res = subsets(nums);   int size = res.size();   for (int i = 0; i < size; i++) {   // 然后在之前的结果之上追加   res.push_back(res[i]);   res.back().push_back(n);   }   return res;   }  

这个问题的时间复杂度计算比较容易坑人。我们之前说的计算递归算法时间复杂度的方法,是找到递归深度,然后乘以每次递归中迭代的次数。对于这个问题,递归深度显然是 N,但我们发现每次递归 for 循环的迭代次数取决于 res 的长度,并不是固定的。

根据刚才的思路,res 的长度应该是每次递归都翻倍,所以说总的迭代次数应该是 2^N。或者不用这么麻烦,你想想一个大小为 N 的集合的子集总共有几个?2^N 个对吧,所以说至少要对 res 添加 2^N 次元素。

那么算法的时间复杂度就是 O(2^N) 吗?还是不对,2^N 个子集是 push_back 添加进 res 的,所以要考虑 push_back 这个操作的效率:

 vector<vector<int>> res = ... for (int i = 0; i < size; i++) { res.push_back(res[i]); // O(N) res.back().push_back(n); // O(1) } 

因为 res[i] 也是一个数组呀,push_back 是把 res[i] copy 一份然后添加到数组的最后,所以一次操作的时间是 O(N)。

综上,总的时间复杂度就是 O(N*2^N),还是比较耗时的。

空间复杂度的话,如果不计算储存返回结果所用的空间的,只需要 O(N) 的递归堆栈空间。如果计算 res 所需的空间,应该是 O(N*2^N)。

第二种通用方法就是回溯算法。旧文「回溯算法详解」写过回溯算法的模板:

 result = [] def backtrack(路径 , 选择列表): if 满足结束条件 : result.add(路径) return for 选择 in 选择列表 : 做选择 backtrack(路径 , 选择列表) 撤销选择 

只要改造回溯算法的模板就行了:

 vector<vector<int>> res; vector<vector<int>> subsets(vector<int>& nums) { // 记录走过的路径 vector<int> track; backtrack(nums, 0, track); return res; } void backtrack(vector<int>& nums, int start, vector<int>& track) { res.push_back(track); // 注意 i 从 start 开始递增 for (int i = start; i < nums.size(); i++) { // 做选择 track.push_back(nums[i]); // 回溯 backtrack(nums, i + 1, track); // 撤销选择 track.pop_back(); } } 

可以看见,对 res 的更新是一个前序遍历,也就是说,res 就是树上的所有节点:

回溯算法团灭排列 / 组合 / 子集问题

 

二、组合

输入两个数字 n, k,算法输出 [1..n] 中 k 个数字的所有组合。

 vector<vector<int>> combine(int n, int k); 

比如输入 n = 4, k = 2,输出如下结果,顺序无所谓,但是不能包含重复(按照组合的定义,[1,2] 和 [2,1] 也算重复):

[
[1,2],
[1,3],
[1,4],
[2,3],
[2,4],
[3,4]
]

这就是典型的回溯算法,k 限制了树的高度,n 限制了树的宽度,直接套我们以前讲过的回溯算法模板框架就行了:

回溯算法团灭排列 / 组合 / 子集问题

 vector<vector<int>>res; vector<vector<int>> combine(int n, int k) { if (k <= 0 || n <= 0) return res; vector<int> track; backtrack(n, k, 1, track); return res; } void backtrack(int n, int k, int start, vector<int>& track) { // 到达树的底部 if (k == track.size()) { res.push_back(track); return; } // 注意 i 从 start 开始递增 for (int i = start; i <= n; i++) { // 做选择 track.push_back(i); backtrack(n, k, i + 1, track); // 撤销选择 track.pop_back(); } } 

backtrack 函数和计算子集的差不多,区别在于,更新 res 的地方是树的底端

三、排列

输入一个不包含重复数字的数组 nums,返回这些数字的全部排列。

 vector<vector<int>> permute(vector<int>& nums); 

比如说输入数组 [1,2,3],输出结果应该如下,顺序无所谓,不能有重复:

[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]

回溯算法详解 中就是拿这个问题来解释回溯模板的。这里又列出这个问题,是将「排列」和「组合」这两个回溯算法的代码拿出来对比。

首先画出回溯树来看一看:

回溯算法团灭排列 / 组合 / 子集问题

我们当时使用 Java 代码写的解法:

 List> res = new LinkedList<>(); /* 主函数,输入一组不重复的数字,返回它们的全排列 */ List> permute(int[] nums) { // 记录「路径」 LinkedList track = new LinkedList<>(); backtrack(nums, track); return res; } void backtrack(int[] nums, LinkedList track) { // 触发结束条件 if (track.size() == nums.length) { res.add(new LinkedList(track)); return; } for (int i = 0; i < nums.length; i++) { // 排除不合法的选择 if (track.contains(nums[i])) continue; // 做选择 track.add(nums[i]); // 进入下一层决策树 backtrack(nums, track); // 取消选择 track.removeLast(); } } 

回溯模板依然没有变,但是根据排列问题和组合问题画出的树来看,排列问题的树比较对称,而组合问题的树越靠右节点越少。

在代码中的体现就是,排列问题每次通过 contains 方法来排除在 track 中已经选择过的数字;而组合问题通过传入一个 start 参数,来排除 start 索引之前的数字。

以上,就是排列组合和子集三个问题的解法,总结一下

子集问题可以利用数学归纳思想,假设已知一个规模较小的问题的结果,思考如何推导出原问题的结果。也可以用回溯算法,要用 start 参数排除已选择的数字。

组合问题利用的是回溯思想,结果可以表示成树结构,我们只要套用回溯算法模板即可,关键点在于要用一个 start 排除已经选择过的数字。

排列问题是回溯思想,也可以表示成树结构套用算法模板,不同之处在于使用 contains 方法排除已经选择的数字,前文有详细分析,这里主要是和组合问题作对比。

对于这三个问题,关键区别在于回溯树的结构,不妨多观察递归树的结构,很自然就可以理解代码的含义了。

免责声明
世链财经作为开放的信息发布平台,所有资讯仅代表作者个人观点,与世链财经无关。如文章、图片、音频或视频出现侵权、违规及其他不当言论,请提供相关材料,发送到:2785592653@qq.com。
风险提示:本站所提供的资讯不代表任何投资暗示。投资有风险,入市须谨慎。
世链粉丝群:提供最新热点新闻,空投糖果、红包等福利,微信:juu3644。